x
Filter:
Filters applied
- Regular Research Articles
- CERemove CE filter
- triglycerideRemove triglyceride filter
Publication Date
Please choose a date range between 2021 and 2022.
Author
- Calabresi, Laura2
- Mihna, Daniel2
- Morton, Richard E2
- Parini, Paolo2
- Pavanello, Chiara2
- Aasa, Ulrika1
- Alabi, Adekunle1
- Alvarez-Jarreta, Jorge1
- Arnemo, Jon M1
- Arya, Arvind1
- Bentley, Kirsten1
- Bjorkhem, Ingemar1
- Brown, Richard William1
- Buurma, Niklaas J1
- Camejo, Gérman1
- Chang, Xiaole1
- Deng, Shijun1
- Fröbert, Ole1
- Griffiths, William J1
- Gu, Hong-mei1
- Heyman, James1
- Hurt-Camejo, Eva1
- Jenkins, P Vince1
- Kindberg, Jonas1
- Köfeler, Harald1
Keyword
- cholesteryl ester6
- TG6
- phospholipid5
- PL5
- TC4
- total cholesterol4
- CETP3
- cholesteryl ester transfer protein3
- lipoproteins3
- ApoF2
- FC2
- FPLC2
- LDL2
- PC2
- UC2
- 1,1'-dioctadecyl- 3,3,3',3'-tetramethylindocarbocyanine perchlorate1
- 1,6-diphenyl-1,3,5 hexatriene1
- 1-(4-trimethylammoniumphenyl)-1,3,5-hexatriene1
- AAV1
- ACE21
- AD1
- ALT1
- ASCVD1
Regular Research Articles
6 Results
- Research ArticleOpen Access
Plasma FA composition in familial LCAT deficiency indicates SOAT2-derived cholesteryl ester formation in humans
Journal of Lipid ResearchVol. 63Issue 7100232Published online: May 18, 2022- Chiara Pavanello
- Alice Ossoli
- Arianna Strazzella
- Patrizia Risè
- Fabrizio Veglia
- Marie Lhomme
- and others
Cited in Scopus: 0Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. - Research ArticleOpen Access
The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses
Journal of Lipid ResearchVol. 63Issue 6100208Published online: April 14, 2022- Zack Saud
- Victoria J. Tyrrell
- Andreas Zaragkoulias
- Majd B. Protty
- Evelina Statkute
- Anzelika Rubina
- and others
Cited in Scopus: 9The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. - Research ArticleOpen Access
Apolipoprotein F concentration, activity, and the properties of LDL controlling ApoF activation in hyperlipidemic plasma
Journal of Lipid ResearchVol. 63Issue 2100166Published online: January 7, 2022- Richard E. Morton
- Daniel Mihna
Cited in Scopus: 0Apolipoprotein F (ApoF) modulates lipoprotein metabolism by selectively inhibiting cholesteryl ester transfer protein activity on LDL. This ApoF activity requires that it is bound to LDL. How hyperlipidemia alters total plasma ApoF and its binding to LDL are poorly understood. In this study, total plasma ApoF and LDL-bound ApoF were quantified by ELISA (n = 200). Plasma ApoF was increased 31% in hypercholesterolemic plasma but decreased 20% in hypertriglyceridemia. However, in donors with combined hypercholesterolemia and hypertriglyceridemia, the elevated triglyceride ameliorated the rise in ApoF caused by hypercholesterolemia alone. - Research ArticleOpen Access
The lipid substrate preference of CETP controls the biochemical properties of HDL in fat/cholesterol-fed hamsters
Journal of Lipid ResearchVol. 62100027Published online: January 27, 2021- Richard E. Morton
- Daniel Mihna
- Yan Liu
Cited in Scopus: 0Cholesteryl ester transfer protein (CETP) modulates lipoprotein metabolism by transferring cholesteryl ester (CE) and triglyceride (TG) between lipoproteins. However, differences in the way CETP functions exist across species. Unlike human CETP, hamster CETP prefers TG over CE as a substrate, raising questions regarding how substrate preference may impact lipoprotein metabolism. To understand how altering the CE versus TG substrate specificity of CETP might impact lipoprotein metabolism in humans, we modified CETP expression in fat/cholesterol-fed hamsters, which have a human-like lipoprotein profile. - Research ArticleOpen Access
Vasculoprotective properties of plasma lipoproteins from brown bears (Ursus arctos)
Journal of Lipid ResearchVol. 62100065Published online: March 10, 2021- Matteo Pedrelli
- Paolo Parini
- Jonas Kindberg
- Jon M. Arnemo
- Ingemar Bjorkhem
- Ulrika Aasa
- and others
Cited in Scopus: 0Plasma cholesterol and triglyceride (TG) levels are twice as high in hibernating brown bears (Ursus arctos) than healthy humans. Yet, bears display no signs of early stage atherosclerosis development when adult. To explore this apparent paradox, we analyzed plasma lipoproteins from the same 10 bears in winter (hibernation) and summer using size exclusion chromatography, ultracentrifugation, and electrophoresis. LDL binding to arterial proteoglycans (PGs) and plasma cholesterol efflux capacity (CEC) were also evaluated. - Research ArticleOpen Access
Atherosclerosis-associated hepatic secretion of VLDL but not PCSK9 is dependent on cargo receptor protein Surf4
Journal of Lipid ResearchVol. 62100091Published online: June 9, 2021- Bingxiang Wang
- Yishi Shen
- Lei Zhai
- Xiaodan Xia
- Hong-mei Gu
- Maggie Wang
- and others
Cited in Scopus: 0Plasma LDL is produced from catabolism of VLDL and cleared from circulation mainly via the hepatic LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes LDLR degradation, increasing plasma LDL-C levels. Circulating PCSK9 is mainly secreted by the liver, whereas VLDL is exclusively secreted by hepatocytes. However, the mechanism regulating their secretion is not completely understood. Surfeit 4 (Surf4) is a cargo receptor localized in the ER membrane. It recruits cargos into coat protein complex II vesicles to facilitate their secretion.