x
Filter:
Filters applied
- Regular Research Articles
- lipoproteinsRemove lipoproteins filter
- phospholipidRemove phospholipid filter
Publication Date
Please choose a date range between 2021 and 2022.
Author
- Calabresi, Laura2
- Parini, Paolo2
- Pavanello, Chiara2
- Aasa, Ulrika1
- Arnemo, Jon M1
- Bjorkhem, Ingemar1
- Camejo, Gérman1
- Fröbert, Ole1
- Hurt-Camejo, Eva1
- Kindberg, Jonas1
- Lhomme, Marie1
- Mihna, Daniel1
- Morton, Richard E1
- Ossoli, Alice1
- Pedrelli, Matteo1
- Risè, Patrizia1
- Strazzella, Arianna1
- Turri, Marta1
- Veglia, Fabrizio1
- Walentinsson, Anna1
- Westerståhl, Maria1
- Öörni, Katariina1
Regular Research Articles
3 Results
- Research ArticleOpen Access
Plasma FA composition in familial LCAT deficiency indicates SOAT2-derived cholesteryl ester formation in humans
Journal of Lipid ResearchVol. 63Issue 7100232Published online: May 18, 2022- Chiara Pavanello
- Alice Ossoli
- Arianna Strazzella
- Patrizia Risè
- Fabrizio Veglia
- Marie Lhomme
- and others
Cited in Scopus: 0Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. - Research ArticleOpen Access
Apolipoprotein F concentration, activity, and the properties of LDL controlling ApoF activation in hyperlipidemic plasma
Journal of Lipid ResearchVol. 63Issue 2100166Published online: January 7, 2022- Richard E. Morton
- Daniel Mihna
Cited in Scopus: 0Apolipoprotein F (ApoF) modulates lipoprotein metabolism by selectively inhibiting cholesteryl ester transfer protein activity on LDL. This ApoF activity requires that it is bound to LDL. How hyperlipidemia alters total plasma ApoF and its binding to LDL are poorly understood. In this study, total plasma ApoF and LDL-bound ApoF were quantified by ELISA (n = 200). Plasma ApoF was increased 31% in hypercholesterolemic plasma but decreased 20% in hypertriglyceridemia. However, in donors with combined hypercholesterolemia and hypertriglyceridemia, the elevated triglyceride ameliorated the rise in ApoF caused by hypercholesterolemia alone. - Research ArticleOpen Access
Vasculoprotective properties of plasma lipoproteins from brown bears (Ursus arctos)
Journal of Lipid ResearchVol. 62100065Published online: March 10, 2021- Matteo Pedrelli
- Paolo Parini
- Jonas Kindberg
- Jon M. Arnemo
- Ingemar Bjorkhem
- Ulrika Aasa
- and others
Cited in Scopus: 0Plasma cholesterol and triglyceride (TG) levels are twice as high in hibernating brown bears (Ursus arctos) than healthy humans. Yet, bears display no signs of early stage atherosclerosis development when adult. To explore this apparent paradox, we analyzed plasma lipoproteins from the same 10 bears in winter (hibernation) and summer using size exclusion chromatography, ultracentrifugation, and electrophoresis. LDL binding to arterial proteoglycans (PGs) and plasma cholesterol efflux capacity (CEC) were also evaluated.