x
Filter:
Filters applied
- Regular Research Articles
- triacylglycerolRemove triacylglycerol filter
- 2021 - 2023Remove 2021 - 2023 filter
Author
- Anand, Sumit Kumar1
- Andersson, Emma1
- Binte Abu Bakar, Syaza Y1
- Blanksby, Stephen J1
- Blüher, Matthias1
- Bowman, Andrew P1
- Boyd, Ben J1
- Cansby, Emmelie1
- Caputo, Mara1
- Chalhoub, Gabriel1
- Clulow, Andrew J1
- Dane, Adriaan D1
- Du, Yuwei1
- Duarte, João MN1
- Ellis, Shane R1
- Geddes, Donna T1
- Geley, Stephan1
- Golderer, Georg1
- Gunter, Jennifer H1
- Haemmerle, Guenter1
- Hawley, Adrian1
- He, Yuan1
- Heeren, Ron MA1
- Heier, Christoph1
- Henricsson, Marcus1
Regular Research Articles
8 Results
- Research ArticleOpen Access
Liposomes trigger bone marrow niche macrophage “foam” cell formation and affect hematopoiesis in mice
Journal of Lipid ResearchVol. 63Issue 10100273Published online: September 6, 2022- Yue Li
- Ran Yao
- Miao Ren
- Ke Yuan
- Yuwei Du
- Yuan He
- and others
Cited in Scopus: 0Liposomes are the most widely used nanocarrier platform for the delivery of therapeutic and diagnostic agents, and a number of liposomes have been approved for use in clinical practice. After systemic administration, most liposomes are cleared by macrophages in the mononuclear phagocyte system, such as the liver and bone marrow (BM). However, the majority of studies have focused on investigating the therapeutic results of liposomal drugs, and too few studies have evaluated the potential side effects of empty nanocarriers on the functions of macrophages in the mononuclear phagocyte system. - Research ArticleOpen Access
Inhibition of MAP4K4 signaling initiates metabolic reprogramming to protect hepatocytes from lipotoxic damage
Journal of Lipid ResearchVol. 63Issue 7100238Published online: June 6, 2022- Sumit Kumar Anand
- Mara Caputo
- Ying Xia
- Emma Andersson
- Emmelie Cansby
- Sima Kumari
- and others
Cited in Scopus: 1The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. - Research ArticleOpen Access
Adaptations of the 3T3-L1 adipocyte lipidome to defective ether lipid catabolism upon Agmo knockdown
Journal of Lipid ResearchVol. 63Issue 6100222Published online: May 7, 2022- Sabrina Sailer
- Katharina Lackner
- Mia L. Pras-Raves
- Eric J.M. Wever
- Jan B. van Klinken
- Adriaan D. Dane
- and others
Cited in Scopus: 0Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. - Research ArticleOpen Access
Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer
Journal of Lipid ResearchVol. 63Issue 6100223Published online: May 7, 2022- Reuben S.E. Young
- Andrew P. Bowman
- Kaylyn D. Tousignant
- Berwyck L.J. Poad
- Jennifer H. Gunter
- Lisa K. Philp
- and others
Cited in Scopus: 5The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. - Research ArticleOpen Access
Hormone-sensitive lipase is localized at synapses and is necessary for normal memory functioning in mice
Journal of Lipid ResearchVol. 63Issue 5100195Published online: March 14, 2022- Cecilia Skoug
- Cecilia Holm
- João M.N. Duarte
Cited in Scopus: 3Hormone-sensitive lipase (HSL) is mainly present in adipose tissue where it hydrolyzes diacylglycerol. Although expression of HSL has also been reported in the brain, its presence in different cellular compartments is uncertain, and its role in regulating brain lipid metabolism remains hitherto unexplored. We hypothesized that HSL might play a role in regulating the availability of bioactive lipids necessary for neuronal function and therefore investigated whether dampening HSL activity could lead to brain dysfunction. - Research ArticleOpen Access
Hormone-sensitive lipase protects adipose triglyceride lipase-deficient mice from lethal lipotoxic cardiomyopathy
Journal of Lipid ResearchVol. 63Issue 5100194Published online: March 10, 2022- Mika Yamada
- Jinya Suzuki
- Satsuki Sato
- Yasuo Zenimaru
- Rie Saito
- Tadashi Konoshita
- and others
Cited in Scopus: 1Lipid droplets (LDs) are multifunctional organelles that regulate energy storage and cellular homeostasis. The first step of triacylglycerol hydrolysis in LDs is catalyzed by adipose triglyceride lipase (ATGL), deficiency of which results in lethal cardiac steatosis. Although hormone-sensitive lipase (HSL) functions as a diacylglycerol lipase in the heart, we hypothesized that activation of HSL might compensate for ATGL deficiency. To test this hypothesis, we crossed ATGL-KO (AKO) mice and cardiac-specific HSL-overexpressing mice (cHSL) to establish homozygous AKO mice and AKO mice with cardiac-specific HSL overexpression (AKO+cHSL). - Research ArticleOpen Access
Impact of pasteurization on the self-assembly of human milk lipids during digestion
Journal of Lipid ResearchVol. 63Issue 5100183Published online: February 15, 2022- Syaza Y. Binte Abu Bakar
- Malinda Salim
- Andrew J. Clulow
- Adrian Hawley
- Joseph Pelle
- Donna T. Geddes
- and others
Cited in Scopus: 1Human milk is critical for the survival and development of infants. This source of nutrition contains components that protect against infections while stimulating immune maturation. In cases where the mother's own milk is unavailable, pasteurized donor milk is the preferred option. Although pasteurization has been shown to have minimal impact on the lipid and FA composition before digestion, no correlation has been made between the impact of pasteurization on the FFA composition and the self-assembly of lipids during digestion, which could act as delivery mechanisms for poorly water-soluble components. - Research ArticleOpen Access
Lipid droplet-mitochondria coupling via perilipin 5 augments respiratory capacity but is dispensable for FA oxidation
Journal of Lipid ResearchVol. 63Issue 3100172Published online: January 20, 2022- Benedikt Kien
- Stephanie Kolleritsch
- Natalia Kunowska
- Christoph Heier
- Gabriel Chalhoub
- Anna Tilp
- and others
Cited in Scopus: 5Disturbances in lipid homeostasis can cause mitochondrial dysfunction and lipotoxicity. Perilipin 5 (PLIN5) decorates intracellular lipid droplets (LDs) in oxidative tissues and controls triacylglycerol (TG) turnover via its interactions with adipose triglyceride lipase and the adipose triglyceride lipase coactivator, comparative gene identification-58. Furthermore, PLIN5 anchors mitochondria to the LD membrane via the outermost part of the carboxyl terminus. However, the role of this LD-mitochondria coupling (LDMC) in cellular energy catabolism is less established.